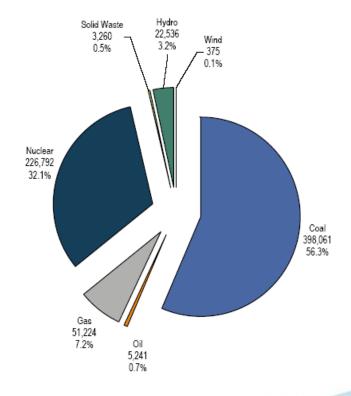


Operating the PJM System

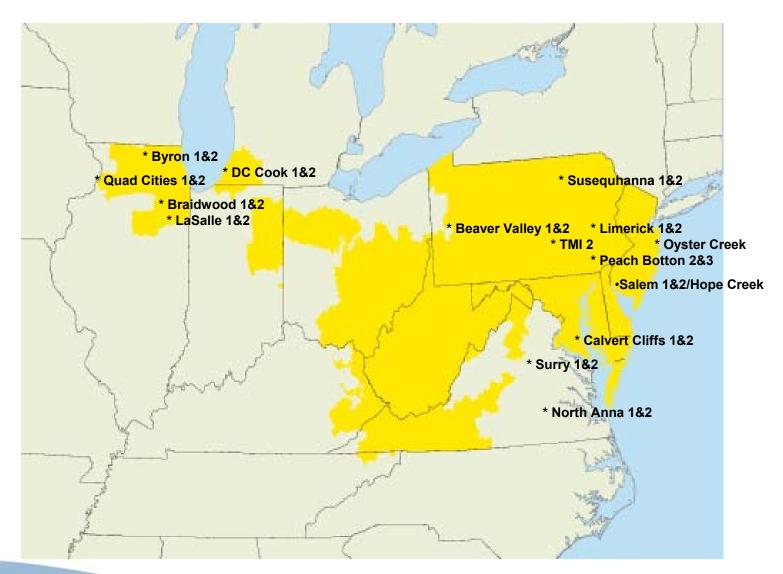
NRC Regulatory Information Conference
Session C1: Grid Reliability
Frank J. Koza, General Manager
Regional Operations of PJM Interconnection
March 8, 2005

- May 1, 2004 Commonwealth Edison
 - Installation of a 500 MW pathway between ComEd and existing PJM control areas (= 2 control areas)
- October 1, 2004 AEP and Dayton Power and Light
 - Removal of pathway and consolidation of the control areas to one control area
- January 1, 2005 Duquesne Light
 - Inclusion of FE Beaver Valley as a capacity resource in PJM
- Spring 2005 Dominion

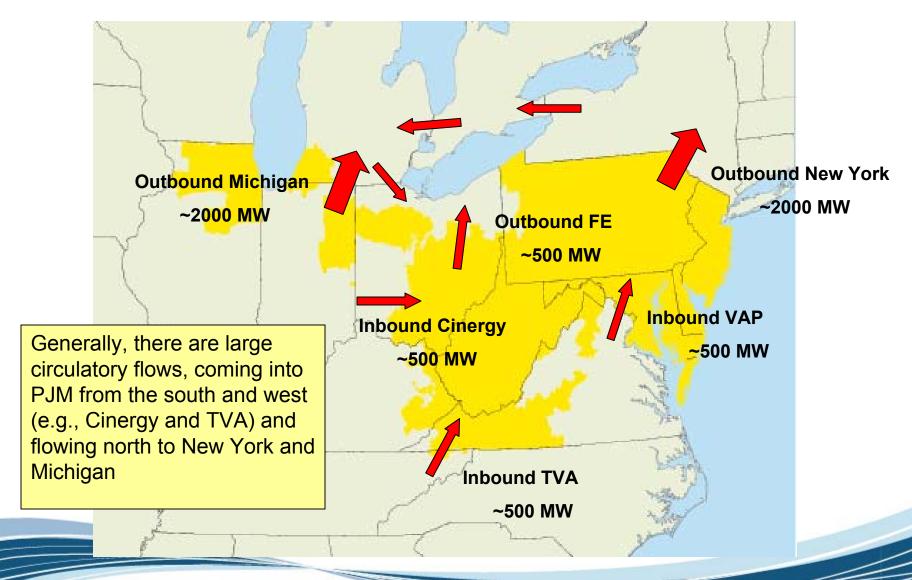


Overview of PJM—Energy Market Statistics

KEY STATISTICS*	РЈМ	PJM Jan. 1 with Duquesne Light			
millions of people served	44	45.3			
peak load in megawatts	107,820	110,700			
megawatts of generating capacity	134,250	137,490			
miles of transmission lines	49,300	49,970			
generation sources	984	1001			
square miles of territory	137,700	138,510			
area served	12 states + D.C.	12 states + D.C.			


*numbers are approximate

Generation By Fuel Source (GWH)



Overview of PJM—Nuclear Plants

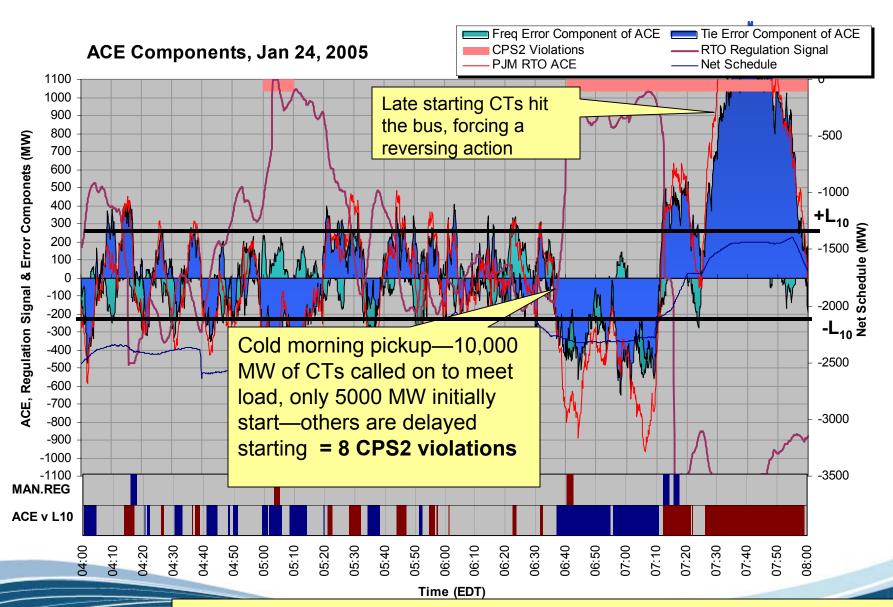
$$ACE = (N_{IA} - N_{IS}) - 10\beta (F_A - F_S) - I_{ME}$$

Tie Error Component

Total difference between actual and scheduled interchange summed across the metered boundaries of PJM

Frequency Error Component

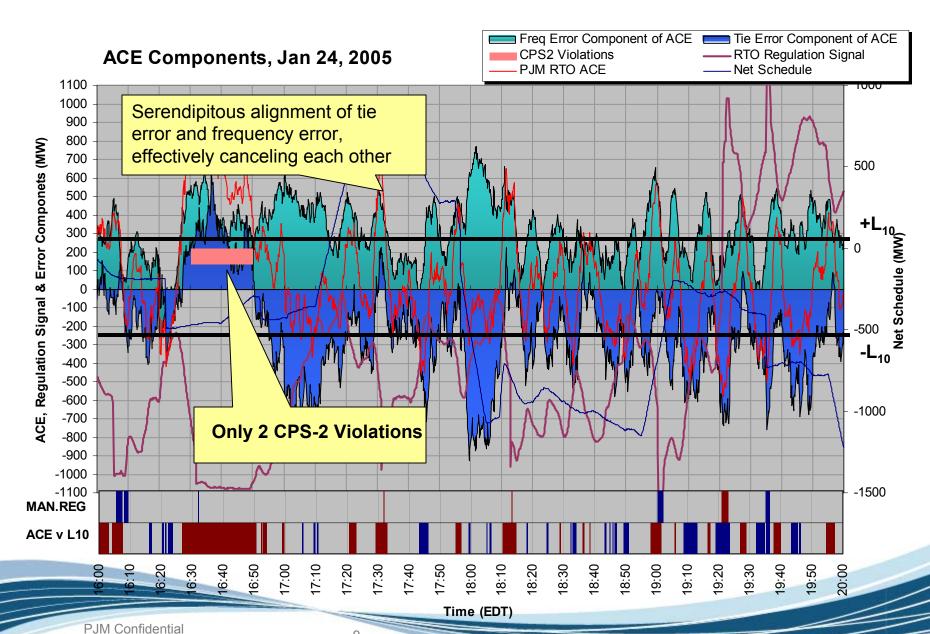
Difference between actual frequency and scheduled frequency (normally 60 Hz)


For PJM, 1138 MW/0.1 Hz

Bottom Line: PJM must keep its average ACE within ± 258 MW for at least 90% of every 10 minute period for the month (NERC CPS-2 Control Performance Requirement)

PJM Confident ©2003 PJM

January 24 Case Study—Morning Pickup



©2003 PJM

January 24 Case Study—Evening Pickup

- Created by the owners as a feature of PJM governance (PJM staff facilitates and provides administrative support)
- Broad participation from the nuclear owners: AEP, AmerGen, Constellation, Dominion, Exelon, First Energy, PPL, and PSEG

- "Cultural" Differences
 - Communications (Don't speak the same language)
 - Have differing regulatory accountabilities (FERC vs. NRC vs. State PUCs)
 - Market role (Code of Conduct issues)

Nuclear Communications Protocol (PJM Manual M-1, Attachment B)

http://www.pjm.com/contributions/pjm-manuals/pdf/m01v08.pdf

Features:

- Nuclear Safety/ Grid Reliability Philosophies
- Roles and Responsibilities
- Key Terms Defined
- Event Communications
- Regulatory Background Information

KEY TRANSMISSION TERMS

First Contingency Violation

The transmission system is operated so that the single loss of any facility (line, generator, etc.) will not result in violation of any operating limit. The single loss is called the first contingency. The transmission operators have software that simulates the first contingency individually for a number of facilities on the system.

Implication: The operators are required to correct any first contingency violation that will violate the emergency ratings on any facility within a period of time (normally within 30 minutes). If the operators ask the nuclear plant to take action as the result of the first contingency violation, the action should be implemented unless the action will jeopardize nuclear safety, personnel safety, or equipment protection.

- Post-contingency Voltage Stability
 - NPPs generally have more restrictive voltage limits than the grid
 - In an accident scenario, will the safety systems work if needed?

Notification and Mitigation Protocols for Nuclear Plant Voltage Limits (PJM Manual M-3, Section 3, page 36)

http://www.pjm.com/contributions/pjm-manuals/pdf/m03v14.pdf

Regarding Code of Conduct issues:

"If PJM operators observe voltage violations or anticipate voltage violations (pre or post-contingency) at any nuclear stations; PJM operators are permitted to provide the nuclear plant with the actual voltage at that location, the post-contingency voltage at that location (if appropriate) and limiting contingency causing the violation."

Example of Voltage Standards and Operational Philosophy

PJM BASE LINE VOLTAGE LIMITS

PJM Base Line Voltage Limits						
Limit	500 kV	345 kV	230 kV	138 kV	115 kV	69 kV
High	550	362	242	145	121	72.5
	(1.10)	(1.05)	(1.05)	(1.05)	(1.05)	(1.05)
Normal Low	500	328	219	131	109	65.5
	(1.00)	(.95)	(.95)	(.95)	(.95)	(.95)
Emergency Low*	485	317	212	127	106	63.5
	(.97)	(.92)	(.92)	(.92)	(.92)	(.92)
Load Dump*	475 (.95)	310	207	124	103	62

Voltage Drop Warning* 2.5% Voltage Drop Violation* 5-8%**

Exhibit 5: PJ

The following chart details PJM's Voltage Operating Guidelines for a Post-Contingency Simulated Operation.

Voltage Limit Exceeded	If post contingency simulated voltage limits are violated	Time to correct (minutes)	
High Voltage	Use all effective non-cost and off- cost actions.	30 minutes	
Normal Low	Use all effective non-cost actions.	Not applicable	
Emergency Low	Use all effective non-cost actions, off-cost actions, and emergency procedures except load shed.	15 minutes	
Load Dump Low	All of the above plus, shed load if analysis indicates the potential for a voltage collapse.	5 minutes	
Voltage Drop Warning	Use all effective non-cost actions.	Not applicable	
Voltage Drop Violation	All effective non-cost and off-cost actions plus, shed load if analysis indicates the potential for a voltage collapse.	15 minutes	

^{*} Refer to PJM Manual for Emergen
** The voltage drop violation percent:

- Outage Coordination
 - NPP perspective: Getting the transmission owner to perform maintenance when the NPP is in an outage to mitigate NPP risk
 - Transmission perspective: We don't schedule maintenance the way they do.

Outage Coordination Procedures (PJM Manual M-3, Section 4) Same link as above

- Strict advanced notification requirements
- Multiple step analysis process to ensure reliability is maintained
- Wide dissemination of outage information

Special Consideration for Nuclear Plants

The Nuclear Generating Stations coordinate the scheduling of a Unit Breaker outage and internal plant equipment outages and testing to minimize station risk. Adherence to outage schedule and duration is critical to the plant during these evolutions. Emergent plant or transmission system conditions may require schedule adjustments, which should be minimized. Any change to the outage schedule that impacts the Unit Breakers shall be communicated to the nuclear generator operator. The following Nuclear Generating Stations have transmission system connections that can impact Nuclear Station Safety Systems:

	Classicity Cycle
Peach Bottom:	Limerick:
Unit 2: CB 215	Unit 1: CB 535
CB 225	CB 635
Unit 3: CB 15	Unit 2: CB 235
CB 65	CB 335
Salem:	Oyster Creek:
Unit 1: 5 – 6 B.S. 10X	GD1
2 – 6 B.S. 11X	GC1
Unit 2: 9 – 10 B.S. 30X	
1 – 9 B.S. 32X	
Hope Creek:	Calvert Cliffs:
BS 6 – 5 50X	Unit 1: 552 – 22
BS 2 – 6 52X	552 – 23
	Unit 2: 552 – 61

552 - 63